Innovative NFC sensor can transmit information on hazardous chemicals, food spoilage to smartphone

Innovative NFC sensor can transmit information on hazardous chemicals, food spoilage to smartphone

Detecting the hazardous gases and substances now becomes easy with a new innovative NFC sensor which transmits information and data to smartphone. MIT chemists have devised a new way to wirelessly detect hazardous gases and environment pollutants, using a simple sensor that can be read by a smartphone. These inexpensive sensors could be widely deployed, making it easier to monitor public spaces or detect food spoilage in warehouses. Using this system, the researchers have demonstrated that they can detect gaseous ammonia, hydrogen peroxide, and cyclohexanone, among other gases.

“The beauty of these sensors is that they are really cheap. You put them up, they sit there, and then you come around and read them. There’s no wiring involved. There’s no power,” says Timothy Swager, the John D. MacArthur Professor of Chemistry at MIT. “You can get quite imaginative as to what you might want to do with a technology like this.”

Swager is the senior author of a paper describing the new sensors in the Proceedings of the National Academy of Sciences the week of Dec. 8. Chemistry graduate student Joseph Azzarelli is the paper’s lead author; other authors are postdoc Katherine Mirica and former MIT postdoc Jens Ravnsbaek.

For several years, Swager’s lab has been developing gas-detecting sensors based on devices known as chemiresistors, which consist of simple electrical circuits modified so that their resistance changes when exposed to a particular chemical. Measuring that change in resistance reveals whether the target gas is present. Unlike commercially available chemiresistors, the sensors developed in Swager’s lab require almost no energy and can function at ambient temperatures. “This would allow us to put sensors in many different environments or in many different devices,” Swager says.

The new sensors are made from modified near-field communication (NFC) tags. These tags, which receive the little power they need from the device reading them, function as wirelessly addressable barcodes and are mainly used for tracking products such as cars or pharmaceuticals as they move through a supply chain, such as in a manufacturing plant or warehouse. NFC tags can be read by any smartphone that has near-field communication capability, which is included in many newer spartphone models. These phones can send out short pulses of magnetic fields at radio frequency (13.56 megahertz), inducing an electric current in the circuit on the tag, which relays information to the phone.


Post a Comment