Instant-Start Computers could be possible

Instant-Start Computers could be possible

Using a room-temperature magnetoelectric memory device, engineers at Cornell University have made a breakthrough that may lead to instant-start computers.  To encode data, today’s computer memory technology uses electric currents – a major limiting factor for reliability and shrinkability, and the source of significant power consumption. If data could instead be encoded without current – for example, by an electric field applied across an insulator – it would require much less energy, and make things like low-power, instant-on computing a ubiquitous reality.


A team at Cornell University led by postdoctoral associate John Heron, who works jointly with Darrell Schlom, professor of Industrial Chemistry in the Department of Materials Science and Engineering, and Dan Ralph, professor of Physics in the College of Arts and Sciences, has made a breakthrough in that direction with a room-temperature magnetoelectric memory device. Equivalent to one computer bit, it exhibits the holy grail of next-generation nonvolatile memory: magnetic switchability, in two steps, with nothing but an electric field. Their results were published online December 17 in Nature, along with an associated “News and Views” article.

“The advantage here is low energy consumption,” Heron said. “It requires a low voltage, without current, to switch it. Devices that use currents consume more energy and dissipate a significant amount of that energy in the form of heat. That is what’s heating up your computer and draining your batteries.” The researchers made their device out of a compound called bismuth ferrite, a favorite among materials mavens for a spectacularly rare trait: It’s both magnetic – like a fridge magnet, it has its own, permanent local magnetic field – and also ferroelectric, meaning it’s always electrically polarized, and that polarization can be switched by applying an electric field. Such so-called ferroic materials are typically one or the other, rarely both, as the mechanisms that drive the two phenomena usually fight each other.

The paper, “Deterministic Switching of Ferromagnetism at Room Temperature Using an Electric Field,” includes collaborators from University of Connecticut; University of California, Berkeley; Tsinghua University; and Swiss Federal Institute of Technology in Zurich. The research was supported by the National Science Foundation and the Kavli Institute at Cornell for Nanoscale Science, of which Ralph and Schlom are both members.


Source: Vasyl Kacapyr, Cornell University

0 comments :

Post a Comment